
COAST

Oct 29, 2020

Contents:

1 Getting Started 3
1.1 What is LLVM? . 3
1.2 Prerequisites . 3
1.3 Installing LLVM . 3
1.4 Building the Passes . 4

2 Using the Makefile System 5
2.1 Targets . 5
2.2 Extending the Makefile system . 5
2.3 Example . 5

3 Passes 7
3.1 Description . 7
3.2 Configuration Options . 8
3.3 Details . 11
3.4 Debugging Tools . 13

4 Scope of Replication 15
4.1 Configuration . 15
4.2 Pointer Crossings . 15
4.3 Example . 15

5 Troubleshooting 17
5.1 Troubleshooting Ideas . 17

6 Release Notes 19
6.1 v1.5 - October 2020 . 19
6.2 v1.4 - August 2020 . 19
6.3 v1.3 - November 2019 . 20
6.4 v1.2 - October 2019 . 20

7 Using an IDE to aid LLVM development 23
7.1 Using Eclipse with LLVM . 23
7.2 Using VS Code with LLVM . 24

8 Control Flow Checking via Software Signatures (CFCSS) 25
8.1 Introduction . 25

i

8.2 Previous Work . 25
8.3 Algorithm . 25
8.4 Modifications . 26
8.5 Implementation . 26
8.6 Notes . 27

9 Tests 29
9.1 Baremetal Benchmarks . 29
9.2 FreeRTOS Applications . 29

10 Fault Injection 31

11 Folder guide 33
11.1 boards . 33
11.2 build . 33
11.3 projects . 33
11.4 rtos . 33
11.5 simulation . 33
11.6 tests . 34

12 Results 35
12.1 MSP430 . 35

13 Additional Resources 39

ii

COAST

COmpiler-Assisted Software fault Tolerance

Contents: 1

COAST

2 Contents:

CHAPTER 1

Getting Started

1.1 What is LLVM?

For a good introduction to LLVM, please refer to http://www.cs.cornell.edu/~asampson/blog/llvm.html

1.2 Prerequisites

• Have a version of Linux that has cmake and make installed.

For reference, development of this tool has been done on Ubuntu 16.04 and 18.04.

1.3 Installing LLVM

There are a few different ways that LLVM and Clang can be installed, depending on your system and preferences.
This project uses LLVM v7.0, so make sure you install the correct version.

1.3.1 Option 1 - System Packages

With Ubuntu 18.04 and higher, use the following commands:

sudo apt install llvm-7
sudo apt install clang-7

Other Linux distributions may also have packages available.

1.3.2 Option 2 - Precompiled Binaries

You can obtain precompiled binaries from the official GitHub page for the LLVM project.

3

http://www.cs.cornell.edu/~asampson/blog/llvm.html
https://github.com/llvm/llvm-project/releases

COAST

1.3.3 Option 3 - Build from Source

If the other two options do not work for your system, or if you prefer to have access to the source files for enhanced
debugging purposes, you can build LLVM from source.

• Create a folder to house the repository. It is recommended that the folder containing this repository be in your
home directory. For example, ~/coast/.

• Check out the project:

git clone https://github.com/byuccl/coast.git ~/coast

• Change to the “build” directory and configure the Makefiles. Example invocation:

cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug -DLLVM_ENABLE_ASSERTIONS=On ../
→˓llvm-project/llvm/

To enable support for RISCV targets, add -DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=RISCV to the
cmake invocation.

See the README.md in the “build” folder for more information on how to further configure LLVM.

• Run make. This may take quite a while, up to an hour or more if you do not parallelize the job. Adding the flag
-jn allows you to parallelize across n cores.

Note: The higher the number the faster the builds will take, but the more RAM will be used. Parallelizing across 7
cores can take over 16 GB of RAM. If you run out of RAM, the compilation can fail. In this case simply re-run make
without any parallelization flags to finish the compilation.

If you wish to add the LLVM binaries to your PATH variable, add the following to the end of your .bashrc file:

export PATH="/home/$USER/coast/build/bin:$PATH"

1.4 Building the Passes

To build the passes so they can be used to protect your code:

• Go the “projects” directory

• Make a new subdirectory called “build” and cd into it

• Run cmake ..

• Run make (with optional -jn flag as before)

4 Chapter 1. Getting Started

CHAPTER 2

Using the Makefile System

We have provided a set of Makefiles that can be used to build the benchmarks in the “tests” folder. They are condi-
tionally included to support building executables for various platforms without unnecessary code replication.

2.1 Targets

There are two Make targets commonly used by all of the Makefiles. The first is exe, which builds the executable
itself. The second is program, which runs the executable. If the target architecture is an external device, it will
upload the file to the device. If it is a local architecture, such as lli or x86, then it will run on the host machine.
Some architectures incorporate FPGAs, and so have an additional Make target called configure, which will upload
a bitstream to the FPGA.

2.2 Extending the Makefile system

Adding support for additional platforms requires a new Makefile be created that contains the build flow for the target
platform. The basic idea is to

1. Compile the source code to LLVM IR

2. Run the IR through opt (and enable the -DWC or -TMR passes as necessary)

3. Link the COAST protected code with any other object code in the project

4. Assemble to target machine language

2.3 Example

A good example to look at is the pseudo target lli. This is LLVM’s target independent IR source interpreter. It
can execute .ll or .bc files (plain-text IR or compiled bytecode). It is fairly simple because it does not require an

5

COAST

assembly step. For an example of converting from the protected IR to machine code, look at the Makefile for compiling
to the Pynq architecture.

6 Chapter 2. Using the Makefile System

CHAPTER 3

Passes

COAST consists of a series of LLVM passes. The source code for these passes is found in the “projects” folder. This
section covers the different passes available and their functions.

3.1 Description

• CFCSS: This implements a form of Control Flow Checking via Software Signatures1. Basic blocks are assigned
static signatures in compilation. When the code is executing it compares the current signature to the known static
signature. This allows it to detect errors in the control flow of the program.

• dataflowProtection: This is the underlying pass behind the DWC and TMR passes.

• debugStatements: On occasion programs will compile properly, but the passes will introduce runtime errors.
Use this pass to insert print statements into every basic block in the program. When the program is then run, it
is easy to find the point in the LLVM IR where things went awry. Note that this incurs a very large penalty in
both code size and runtime.

• DWC: This pass implements duplication with compare (DWC) as a form of data flow protection. DWC is also
known as dual modular redundancy (DMR). It is based on EDDI2. Behind the scenes, this pass simply calls the
dataflowProtection pass with the proper arguments.

• exitMarker: For software fault injection we found it helpful to have known breakpoints at the different places
that main() can return. This pass places a function call to a dummy function, EXIT MARKER, immediately
before these return statements. Breakpoints placed at this function allow debuggers to access the final processor
state.

1

N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by software signatures,” IEEE Transactions on Reliability, vol. 51, no. 1,
pp. 111–122, Mar. 2002.

2 ——, “Error detection by duplicated instructions in super-scalar processors,” IEEE Transactions on Reliability, vol. 51, no. 1, pp. 63–75, Mar.
2002.

7

COAST

• TMR: This pass implements triple modular redundancy (TMR) as a form of data flow protection. It is based on
SWIFT-R3 and Trikaya4. Behind the scenes, this pass simply calls the dataflowProtection pass with the proper
arguments.

• smallProfile: This pass can be used to collect dynamic function call counts.

3.2 Configuration Options

COAST can be configured to apply replicating rules in other ways than by the default using Command Line Parameters,
In-code Directives, and a Configuration File.

3.2.1 Command Line Parameters

These options are only applicable to the -DWC and -TMR passes.

The details for each of these options can be found in the Details section.

Command line option Effect
-noMemReplication Don’t replicate variables in memory (ie. use rule D2 instead of D1).
-noLoadSync Don’t synchronize on data loads (C3).
-noStoreDataSync Don’t synchronize the data on data stores (C4).
-noStoreAddrSync Don’t synchronize the address on data stores (C5).
-storeDataSync Force synchronizing data on data stores (C4).

-ignoreFns=<X> <X> is a comma separated list of the functions that should not be
replicated.

-ignoreGlbls=<X> <X> is a comma separated list of the global variables that should not
be replicated.

-skipLibCalls=<X> <X> is a comma separated list of library functions that should only
be called once.

-replicateFnCalls=<X> <X> is a comma separated list of user functions where the body of
the function should not be modified, but the call should be replicated
instead.

-configFile=<X> <X> is the path to the configuration file that has these options saved.

3

J. Chang, G. Reis, and D. August, “Automatic Instruction-Level Software-Only Recovery,” in International Conference on Dependable Systems
and Networks (DSN’06). IEEE, 2006, pp. 83–92.

4

H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran, “Software Resilience and the Effectiveness of Software Mitigation in Microcon-
trollers,” in IEEE Transactions on Nuclear Science, vol. 62, no. 6, Dec. 2015, pp. 2532–2538.

8 Chapter 3. Passes

COAST

-countErrors Enable TMR to track the number of errors corrected.
-runtimeInitGlbls=<X> <X> is a comma separated list of the replicated global variables that

should be initialized at runtime using memcpy.
-i or -s Interleave (-i) the instruction replicas with the original instructions or

group them together and place them immediately before the synchro-
nization logic (-s). COAST defaults to -s.

-dumpModule At the end of execution dump out the contents of the module to the
command line. Mainly helpful for debugging purposes.

-verbose Print out more information about what the pass is modifying.

Note: Replication rules defined by Chielle et al.5.

New in version 1.4.

-isrFunctions=<X> <X> is a comma separated list of the function names that should be
treated as Interrupt Service Routines (ISRs).

-cloneReturn=<X> <X> is a comma separated list of the function names that should have
their return values cloned.

-cloneAfterCall=<X> <X> is a comma separated list of the function names that will have
their arguments cloned after the call.

-protectedLibFn=<X> <X> is a comma separated list of the function names that should be
protected without having their signatures changed.

-countSyncs Instructs COAST to keep track of the dynamic number of synchro-
nization checks. Requires -countErrors.

-protectStack Enable experimental stack protection.
-noCloneOpsCheck Disable exiting on failure of check verifyCloningSuccess.

3.2.2 In-code Directives

Directive Effect
__DEFAULT_xMR Include at the top of the code. Set the default processing to be to

replicate every piece of code except those specifically tagged. This is
the default behavior.

__DEFAULT_NO_xMR Set the default behavior of COAST to not replicate anything except
what is specifically tagged.

__NO_xMR Used to tag functions and variables that should not be replicated.
Functions tagged in this manner behave as if they were passed to -
ignoreFns.

__xMR Designate functions and variables that should be cloned. This repli-
cates function bodies and modifies the function signature.

__xMR_FN_CALL Available for functions only. The same as -replicateFnCalls above.
Repeat function calls instead of modifying the function body.

New in version 1.2.
5

E. Chielle, F. L. Kastensmidt, and S. Cuenca-Asensi, “Overhead reduction in data-flow software-based fault tolerance techniques,” in FPGAs
and Parallel Architectures for Aerospace Applications: Soft Errors and Fault-Tolerant Design. Cham: Springer International Publishing,
2015, pp. 279–291.

3.2. Configuration Options 9

COAST

__COAST_VOLATILE Used to mark global variables as ones that the pass should not remove,
even if it does not appear to be used.

__COAST_IGNORE_GLOBAL(name) Ignore checks for global variable replication in function following this
directive.
See section Replication Scope.

MALLOC_WRAPPER_REGISTER(fname)Give the name of a malloc()-like function that will be replicated.
Should be treated the same as a function prototype.

MALLOC_WRAPPER_CALL(fname,
x)

Make a call to the function registered using the above macro. This
will be replicated by COAST, using the clones of the arguments.

PRINTF_WRAPPER_REGISTER(fname)Give the name of a printf()-like function that will be replicated.
Should be treated the same as a function prototype.

PRINTF_WRAPPER_CALL (fname,
fmt, ...)

Make a call to the function registered using the above macro. This
will be replicated by COAST, using the clones of the arguments.

GENERIC_COAST_WRAPPER(fname) Make your own wrapper function for COAST to replicate calls to.
Used in both declaring and calling the function.

New in version 1.4.

__ISR_FUNC Used to mark functions that should be treated as Interrupt Service
Routines (ISRs).

__xMR_RET_VAL Used to mark functions that should have their return values cloned.
__xMR_PROT_LIB Used to mark functions that should be protected without having their

signatures changed.
__xMR_ALL_AFTER_CALL Used to mark functions that should have their arguments cloned after

the call.
__xMR_AFTER_CALL(fname, x) Specific version of the above macro. Specifiy the arg num-

bers as (name, 1_2_3). Must be registered, similar to
GENERIC_COAST_WRAPPER(fname)

__NO_xMR_ARG(num) The argument [num] should not be replicated. If multiple arguments
need to be marked, this directive should be placed on the function
multiple times.

__COAST_NO_INLINE Convenience for no-inlining functions

See the file COAST.h

3.2.3 Configuration File

Instead of repeating the same command line options across several compilations, we have created a configuration file,
“functions.config” that can capture the same behavior. It is found in the “dataflowProtection” pass folder. The location
of this file can be specified using the -configFile=<...> option. The options are the same as the command line
alternatives.

The default file contains functions we have identified as commonly treated differently than the default COAST options.

10 Chapter 3. Passes

https://github.com/byuccl/coast/blob/master/tests/COAST.h
https://github.com/byuccl/coast/blob/master/projects/dataflowProtection/functions.config

COAST

3.2.4 When to use replication command line options

Desired
Behav-
ior

Function
Type

Option Use Case

Protect
called
function

User Default Standard behavior, use for most cases

LibraryN/A Cannot modify library calls. Instead, see the case below.
Replicate
call

User -replicateFnCalls=<X> When the return value needs to be unique to each instruction
replica, e.g. pointers.

LibraryDefault By default the library calls are performed repeatedly. Use for
most calls.

Call
once,
unmodi-
fied

User -ignoreFns=<X> Interrupt service routines and synchronization logic, such as
polling on an external pin.

Library-skipLibCalls=<X> Whenever the call should not be repeated, such as calls inter-
facing with I/O.

Protect
without
chang-
ing
signa-
ture

User -protectedLibFn=<X> Library functions you have the source code for.

LibraryN/A Can’t protect it if you don’t have the source code.
Return
multiple
values

User -cloneReturn=<X> When calling the function multiple times would have un-
wanted side effects.

LibraryN/A Cannot modify the source code of library functions.

3.3 Details

3.3.1 Replication Rules

VAR3+, the set of replication rules introduced by Chielle et al.5, instructs that all registers and instructions, except
store instructions, should be duplicated. The data used in branches, the addresses before stores and jumps, and the data
used in stores are all synchronized and checked against their duplicates. VAR3+ claims to catch 95% of data errors,
so we used it as a starting point for automated mitigation. However, we removed rule D2, which does not replicate
store instructions, in favor of D1, which does. This results in replication of all variables in memory, and is desirable
as microcontrollers have no guarantee of protected memory. The synchronization rules are included in both DWC and
TMR protection. Rules C1 and C2, synchronizing before each read and write on the register, respectively, are not
included in our pass because these were shown to provide an excessive amount of synchronization. G1, replicating all
registers, and C6, synchronizing before branch or store instructions, cannot be disabled as these are necessary for the
protection to function properly.

The first option, -noMemReplication, should be used whenever memory has a separate form of protection, such
as error correcting codes (ECC). The option specifies that neither store instructions nor variables should be replicated.
This can dramatically speed up the program because there are fewer memory accesses. Loads are still executed
repeatedly from the same address to ensure no corruption occurs while processing the data.

3.3. Details 11

COAST

The option -noStoreAddrSync corresponds to C5. In EDDI, memory was simply duplicated and each duplicate
was offset from the original value by a constant. However, COAST runs before the linker, and thus has no notion of an
address space. We implement rules C3 and C5, checking addresses before stores and loads, for data structures such as
arrays and structs that have an offset from a base address. These offsets, instead of the base addresses, are compared
in the synchronization logic.

Changed in version 1.2.

As of the October 2019 release, COAST no longer syncs before storing data. Test data indicated that, in many cases,
the number of synchronization points generated by this rule limited the effective protection that the replication of
variables afforded. This behavior can be overridden using the -storeDataSync flag.

3.3.2 Replication Scope

The user can specify any functions and global variables that should not be protected using -ignoreFns and
-ignoreGlbls. At minimum, these options should be used to exclude code that interacts with hardware devices
(GPIO, UART) from the SoR. Replicating this code is likely to lead to errors. The option -replicateFnCalls
causes user functions to be called in a coarse grained way, meaning the call is replicated instead of fine-grained in-
struction replication within the function body. Library function calls can also be excluded from replication via the
flag -skipLibCalls, which causes those calls to only be executed once. These two options should be used when
multiple independent copies of a return value should be generated, instead of a single return value propagating through
all replicated instructions. Changing the scope of replication can cause problems across function calls.

New in version 1.2.

Before processing the IR code, COAST begins by checking to make sure the replication scope rules it was given are
consistent. It checks to make sure all cloned globals are only used in functions that are also protected. If they are not,
the compilation will fail, with an error message informing the user which global is used in which function. The user
has the option to ignore these checks if they feel that it is safe. This is done using the __COAST_IGNORE_GLOBAL
macro mentioned above.

New in version 1.4.

There are also some options that have been added that allow more fine-grained control over how different func-
tions and values are protected. The first of these is the command line argument -cloneReturn, or directive
__xMR_RET_VAL. This instructs COAST that the return value of the function should be cloned. This has been
implemented by adding extra arguments to the end of the parameter list that are pointer types of the normal return
value. This prevents the values from passing through a bottleneck. This is particulary useful for functions that return
addresses to memory spaces that have been dynamically allocated.

Another recently added option is the ability to mark functions as “protected library functions”
(-protectedLibFn=<X>, __xMR_PROT_LIB). The idea behind this is that there are some functions that
should not have their signatures changed, but should still have their bodies protected.

Another interesting feature added in this version is the ability to copy the value of the original variable into its clone(s)
after the function call has been completed. An example of when this might be useful is the function sscanf. This
function will read values from a string based on a format specifier and put the values into the pointers provided.

sscanf (sentence,"%s %*s %d",str,&i);

This will allow the copies of the variables to stay in sync with each other even when calling a library function that can
only be called once, that modifies a variable by reference.

We have introduced a way to mark functions as Interrupt Service Routines (ISRs), which means they will not be
changed in any way, nor removed if they don’t appear to have any uses.

COAST now has much better support for changing the protection of variables that are local to protected functions.
They can be excluded from the Scope of Replication using the macro __NO_xMR. Even function arguments can be

12 Chapter 3. Passes

http://www.cplusplus.com/reference/cstdio/sscanf/

COAST

excluded using the macro __NO_xMR_ARG(num).

3.3.3 Other Options

Error Logging: This option was developed for tests in a radiation beam, where upsets are stochastically distributed,
unlike fault injection tests where one upset is guaranteed for each run. COAST can be instructed to keep track of the
number of corrected faults via the flag -countErrors. This flag allows the program to detect corrected upsets,
which yields more precise results on the number of radiation-induced SEUs. This option is only applicable to TMR
because DWC halts on the first error. A global variable, TMR_ERROR_CNT, is incremented each time that all three
copies of the datum do not agree. If this global is not present in the source code then the pass creates it. The user can
print this value at the end of program execution, or read it using a debugging tool.

Error Handlers: The user has the choice of how to handle DWC and CFCSS errors because these are uncor-
rectable. The default behavior is to create abort() function calls if errors are detected. However, user functions
can be called in place of abort(). In order to do so, the source code needs a definition for the function void
FAULT_DETECTED_DWC() or void FAULT_DETECTED_CFCSS() for DWC and CFCSS, respectively.

Input Initialization: Global variables with initial values provide an interesting problem for testing. By default, these
initial values are assigned to each replicate at compile time. This models the scenario where the SoR expands into
the source of the data. However, this does not accurately model the case when code inputs need to be replicated at
runtime. This could happen, for instance, if a UART was feeding data into a program and storing the result in a global
variable. When global variables are listed using -runtimeInitGlbls the pass inserts memcpy() calls to copy
global variable data into the replicates at runtime. This supports scalar values as well as aggregate data types, such as
arrays and structures.

Interleaving: In previous work replicated instructions have all been placed immediately after the original instructions.
Interleaving instructions in this manner effectively reduces the number of available registers because each load state-
ment executes repeatedly, causing each original value to occupy more registers. For TMR, this means that a single load
instruction in the initial code uses three registers in the protected program. As a result, the processor may start using
the stack as extra storage. This introduces additional memory accesses, increasing both the code size and execution
time. Placing each set of replicated instructions immediately before the next synchronization point lessens the pressure
on the register file by eliminating the need for multiple copies of data to be live simultaneously.

By default, COAST groups copies of instructions before synchronization points, effectively partitioning regions of
code into segments where each copy of the program runs uninterrupted. Alternately, the user can specify that instruc-
tions should be interleaved using -i.

Printing Status Messages: Using the -verbose flag will print more information about what the pass is doing. This
includes removing unused functions and unused global strings.

If you are developing passes, then on occasion you might need to include more printing statements. Using the
-dumpModule flag causes the pass to print out the entirety of the LLVM module to the command line in LLVM
IR format.

3.4 Debugging Tools

3.4.1 COAST verbose output

As mentioned above, COAST supports the -verbose and -dumpModule flags. The -verbose output lists alls of
the in-code directives processed, which functions are having their signatures changed, as well as any unused globals
or functions being removed. COAST will also print warnings or errors about unsupported language constructs being
used.

Using the -dumpModule flag is useful to get an idea of what COAST is doing if it’s failing to finish compilation.
The function dumpModule() can also be placed in different places in the code for additional debugging capabilities.

3.4. Debugging Tools 13

COAST

Since the module will be output to the stderr stream, and it can be quite a lot of data, it is important to redirect the
output properly.

Example: opt -TMR -dumpModule input.bc -o output.bc > dump.ll 2>&1

3.4.2 Debug Statements

By default, the Debug Statements pass will add code to the beginning of every basic block that prints out the function
name followed by the name of the basic block. For example, you would expect the first message to be main->entry.
This can produce 100s of MegaBytes of data, so it is important to redirect this output to a file, as shown in the example
above. This verbose output represents a complete call graph of the execution, although trawling through all of this
data can be quite difficult.

New in version 1.2.

There is an option to only add print statements to certain functions. Pass -fnPrintList= with a comma-separated
list of function names that will be instrumented with the print statements. This will allow examining smaller parts of
the execution at a time.

3.4.3 Small Profiler

New in version 1.2.

The Small Profiler is a pass which simply counts the number of calls to each function in the module. It creates global
variables that correspond to each function in the module. Each time a function is called, the corresponding global
variable is incremented. The pass adds a call to a function named PRINT_PROFILE_STATS immediately before
the main function exits. If the program does not terminate, calls to this function may be inserted manually by the
programmer.

This pass also has two command line parameters:

Command line option Effect
printFnName The name of the function that is used to print the stats. The default is

printf. This flag is for if the platform does not support printf.
noPrint Do not insert the call to PRINT_PROFILE_STATS.

14 Chapter 3. Passes

CHAPTER 4

Scope of Replication

We use the term Sphere of Replication (SoR) to indicate which portions of the source code are to be protected. In
large applications, it may be too much overhead to have the entire program protected by COAST, so there is a way to
configure COAST to only protect certain functions, using macros found in the header file COAST.h.

4.1 Configuration

COAST allows for very detailed control over what belongs inside or outside of the Scope of Replication. There are
numerous Command Line Parameters and In-code Directives which allow for projects to be configured very precisely.
COAST even includes a verification step that tries to ensure all SoR rules are self-consistent. It can detect if protected
global variables are used inside unprotected functions, or vice-versa. However, this system is not perfect, and so the
application writer must be aware of the potential pitfalls that could be encountered when using specific replication
rules.

4.2 Pointer Crossings

One of the most common problems to be aware of is pointers which cross the SoR boundaries. Many applications
use dynamically allocated memory. If the function that allocates this memory is inside the SoR, then all references to
these addresses must also be within the SoR. It is true that read-only access would not cause errors, as in the case of
using printf to view the value of such a pointer. But no writes can happen outside the SoR, otherwise the addresses
will get out of sync.

4.3 Example

The unit test linkedList.c shows exactly how SoR crossings can go wrong by looking at a possible implementation of
a linked list.

15

https://github.com/byuccl/coast/blob/master/tests/COAST.h
https://github.com/byuccl/coast/blob/master/tests/TMRregression/unitTests/linkedList.c

COAST

16 Chapter 4. Scope of Replication

CHAPTER 5

Troubleshooting

Although it is unlikely, there is a possibility that COAST could cause user code to crash. This is most often due to
complications over what should be replicated, as described in the When to use replication command line options and
Replication Scope sections. If the crash occurs during compilation, please submit a report to jgoeders@byu.edu or
create an issue. If the code compiles but does not run properly, here are several steps we have found helpful. Note
that running with DWC often exposes these errors, but TMR silently masks incorrect execution, which can make
debugging difficult.

5.1 Troubleshooting Ideas

• Check to see if the program runs using lli before and after the optimizer, then test if the generated binary runs
on your platform. This allows you to test that llc is operating properly.

• You cannot replicate functions that are passed by reference into library calls. This may or may not be possible
in user calls. Use -ignoreFns for these.

• For systems with limited resources, duplicating or triplicating code can take up too much RAM or ROM and
cause the processor to halt. Test if a smaller program can run.

• The majority of bugs that we have encountered have stemmed from incorrect usage of customization. Please
refer to When to use replication command line options and ensure that each function call behaves properly. Many
of these bugs have stemmed from user wrappers to malloc() and free(). The call was not replicated, so all
of the instructions operated on a single piece of data, which caused multiple free() calls on the same memory
address.

• Another point of customization to be aware of is how to handle hardware interactions. Calls to hardware re-
sources, such as a UART, should be marked so they are not replicated unless specifically required.

• Be aware of synchronization logic. If a variable changes between accesses of instruction copies, such as volatile
hardware registers, then the copies will fail when compared.

• Use the -debugStatements flag to explore the IR and find the exact point of failure. See the Debugging
Tools section for more information.

17

mailto:jgoeders@byu.edu
https://github.com/byuccl/coast/issues

COAST

• You may get an error that looks something like undefined symbol: ZTV18dataflowProtection
when you try to run DWC or TMR. This occurs when you do not load the dataflowProtection pass before the
DWC or TMR pass. Include -load <Path to dataflow protection.so> in your call to opt.

• If compiling a C++ project, be aware that the compiler will often mangle the names of functions. In this case,
the function names passed in to COAST may need to be changed. Examine the LLVM IR output being given to
opt to make sure they are correct.

18 Chapter 5. Troubleshooting

https://en.wikipedia.org/wiki/Name_mangling#C++

CHAPTER 6

Release Notes

6.1 v1.5 - October 2020

6.1.1 Fault Injection Supervisor

Python scripts which comprise the Fault Injection interface.

6.1.2 FreeRTOS Example Applications

Example FreeRTOS Applications that run on the FreeRTOS kernel, plus how to protect them with COAST.

Documentation also updated to include information about the Baremetal Benchmarks.

6.2 v1.4 - August 2020

6.2.1 Features

• Support for cloning function return values

• New unit tests

• Better copying of debug info

• Experimental stack protection

• 7 new command line arguments
See Command Line Parameters for more information.

19

COAST

6.2.2 Directives

7 new directives

• __ISR_FUNC

• __xMR_RET_VAL

• __xMR_PROT_LIB

• __xMR_ALL_AFTER_CALL

• __xMR_AFTER_CALL

• __NO_xMR_ARG

• __COAST_NO_INLINE

See In-code Directives for more information.

6.2.3 Bug Fixes

• Correct support for variadic functions

• Fix up debug info for global variables so it works better with GDB

• Better removal of unused functions

• Official way of marking ISR functions instead of function name text matching

6.3 v1.3 - November 2019

Changed the source of the LLVM project files from SVN (deprecated) to the Git mono-repo, version 7.1.0.

6.4 v1.2 - October 2019

6.4.1 Features

• Support for invoke instructions.

• Replication rules, does NOT sync on stores by default, added flag to enable turning that on
(-storeDataSync).

• Support for compiling multiple files in the same project at different times (using the -noMain flag).

• Before running the pass, validates that the replication rules given to COAST are consistent with themselves.

• Can sync on vector types.

• Added more unit tests, along with a test driver.

6.4.2 Directives

• Added directive __SKIP_FN_CALL that has the same behavior as -skipFnCalls= command line parame-
ter.

• Can add option to not check globals crossing Sphere of Replication (__COAST_IGNORE_GLOBAL(name)).

20 Chapter 6. Release Notes

https://llvm.org/docs/Proposals/GitHubMove.html
https://github.com/llvm/llvm-project/tree/llvmorg-7.1.0

COAST

• Added directive macro for marking variables as volatile.

• Treats any globals or functions marked with __attribute__((used)) as volatile and will not remove
them. Also true for globals used in functions marked as “used”.

• Added wrapper macros for calling a function with the clones of the arguments. Useful for printf() and
malloc(), etc, when you only want specific calls to be replicated.

6.4.3 Bug Fixes

Thanks to Christos Gentsos for pointing out some errors in the code base.

• Allow more usage of function pointers by printing warning message instead of crashing.

• Added various missing nullptr checks.

• Fixed crashing on some void return type functions.

• Better cleanup of stale pointers.

6.4.4 Debugging Tools

• Added an option to the DebugStatements pass that only adds print statements to specified functions.

• Created a simplistic profiling pass called SmallProfile that can collect function call counts.

• Support for preserving debug info when source is compiled with debug flags.

6.4. v1.2 - October 2019 21

COAST

22 Chapter 6. Release Notes

CHAPTER 7

Using an IDE to aid LLVM development

We have used both Eclipse and Visual Studio Code in the development of COAST. This is very helpful because it
allows code completion hints that inform you what methods are available for specific classes.

7.1 Using Eclipse with LLVM

This guide was written for Eclipse 4.10.0 using the CDT.

7.1.1 Setting up the project

1. Select “File -> New -> Makefile Project with Existing Code”.

2. Enter projects as the project name.

3. For the existing code location field, browse to the projects directory

4. Use the “Linux GCC” toolchain.

5. Right click on your project directory and select “Properties”

6. Navigate to “C/C++ Build” and change the build directory to your projects/build folder using the “File
system” button.

7. Change to the “Behavior” tab and enable parallel builds. We recommend using 3-4 parallel jobs.

8. Click “Apply” then “Apply and Close”.

9. When you click on the “Build” button the projects will be compiled.

7.1.2 Building the projects

1. Right click on the projects/build subdirectory, then “Make Targets -> Create”.

2. Call the target name all and click OK.

23

COAST

3. To build your pass, right click on the build folder and click “Make Targets -> Build -> Build” (with the target
all selected).

4. After the first time that you’ve done this, you can rebuild all your passes by pressing F9.

7.1.3 Fixing the CDT settings

The default settings of the project are not sufficient to allow the Eclipse CDT indexer to work correctly. While not
necessary to fix the CDT settings, it allows you to use the auotcomplete functionality of Eclipse.

1. Right-click on the project and select “Properties”

2. Under “C/C++ General” select “Paths and Symbols”

3. Add a new Include Directory using the “Add” button

4. Select “File System”

5. Navigate to the repository root, then select llvm/include

6. Check the box “Add to all languages,” then click “OK”

7. On the left pane, select “Preprocessor Include Paths, Macros, etc”

8. On the “Providers” select “CDT GCC Built-in Compiler Settings”

9. Edit the “Command to get compiler specs” by putting std=c++11 right before ${INPUTS}

10. Move the entry “CDT GCC Built-in Compiler Settings” to the top of the list using the “Move Up” button

11. Select “Apply and Close”

1. Select “Window” -> “Preferences”

2. Select “C/C++” -> “Build” -> “Settings”

3. Under the “Discovery” tab select “CDT GCC Built-in Compiler Settings”

4. Edit the “Command to get compiler specs” the same as before

5. Select “Apply and Close”

7.2 Using VS Code with LLVM

1. Open VS Code

2. File -> Open Folder

3. Select the directory that contains the files for the pass you want to develop

4. On the bottom ribbon at the right there will be a button next to the language configuration (ours says “Linux”)

5. Hovering over this button says “C/C++ Configuration”. Click on it

6. You will be taken to a page that allows you to set up a specific configuration for this directory.

7. Click the button “Add Configuration” and give it a name

8. Add the path to the LLVM include files in the section “Include path”

9. For example, because I built LLVM from source, I added the following:

/home/$USER/coast/llvm-project/llvm/include
/home/$USER/coast/build/include

24 Chapter 7. Using an IDE to aid LLVM development

CHAPTER 8

Control Flow Checking via Software Signatures (CFCSS)

8.1 Introduction

As part of our research into software error mitigation, we recognized the necessity of checking for control flow errors
along with dataflow errors.

8.2 Previous Work

Control-flow checking by software signatures1

8.3 Algorithm

The algorithm we determined to use is one found in the research paper mentioned above. A brief description will be
included here.

A program may be split into a representation using ”basic blocks.” A basic block (𝑏𝑛) is a collection of sequential
instructions, into which there is only one entry point, and out of which there is only one exit point. Many basic blocks
may branch into a single basic block, and a single basic block may branch out to many others. The process of ensuring
that these transitions between basic blocks are legal is called Control Flow Checking. A legal transition is defined as
one that is allowed by the control flow graph determined at compile time before the program is run.

At compile time, a graph is generated showing all legal branches. Each basic block is represented by a node. A unique
signature (𝑠𝑛) is assigned to each basic block. Along with this, a signature difference (𝑑𝑛) is assigned to each basic
block, which is calculated by taking the bit-wise XOR (⊕) of the current block and its successor. When the program
is run, a run-time signature tracker (𝐺𝑛) is updated with the signature of the current basic block. When the program
branches to a new basic block, the signature tracker is XOR’d with the signature difference of the new block:

1

N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by software signatures,” IEEE Transactions on Reliability, vol. 51, no. 1,
pp. 111–122, Mar. 2002.

25

COAST

𝐺𝑛 ⊕ 𝑠𝑛 = 𝑑𝑛

Because the XOR operation can undo itself, the result should equal the signature of the current block. If it does not,
then a control flow error has been detected.

Fig. 8.1: correct vs incorrect branching

8.3.1 Branch Fan-in

There is a danger when dealing with dense control flow graphs that there will be a configuration as seen in Fig. 8.2

Fig. 8.2: branch fan-in problem

If 𝑏1 and 𝑏3 are assigned the same signature, then there will be no issue branching to 𝑏4 . However, this opens up the
possibility for illegal branching from 𝑏1 to 𝑏5 without being caught. If all signatures are generated randomly, without
any duplicates, then 𝑏4 will register correct branching from either 𝑏1 or 𝑏3 , but not both.

This necessitates the addition of the run-time signature adjuster. 𝐷𝑛 This is an additional number that is calculated at
compile time for each basic block, then updated as the program executes. It is used to adjust for the differences created
by this branch fan-in problem.

Fig. 8.3: run-time signature adjuster

In the case of the branch from 𝑏1 to 𝑏4 , the signature adjuster will be 0. In the case of the branch from 𝑏3 to 𝑏4 , the
signature adjuster will be

𝐷3 = 𝑠3 ⊕ 𝑑4 ⊕ 𝑠4

such that

𝐺4 = 𝐺3 ⊕ 𝑑4 ⊕𝐷3

8.4 Modifications

Although the algorithm described above is very robust, there were some instances where it does not perform correctly.
If a node has two successors which are themselves both branch fan-in nodes (as in Fig. 8.4), the algorithm will correctly
assign a signature adjuster value for one branch, but not for the other.

To solve this problem, we determined to insert an extra basic block to act as a buffer. This would go between the
predecessor with the invalid signature adjuster and the successor that is the branch fan-in node (see Fig. 8.6) It would
contain no instructions other than those that verify proper control flow. Because this buffer block would only have one
predecessor, it would not need to use the signature adjuster, whatever the value might be. The value for 𝐷8 for the
buffer block would be determined to allow correct branching to the successor node.

8.5 Implementation

We implemented this algorithm using LLVM. It was implemented as a pass that the optimizer runs before the back-
end compiles the assembly into machine code. This particular implementation worked very well with the algorithm,
because LLVM automatically splits its programs into basic blocks. One of the challenges this presented was compiling

26 Chapter 8. Control Flow Checking via Software Signatures (CFCSS)

COAST

Fig. 8.4: multiple successors with branch fan-in

Fig. 8.5: run-time signature adjuster error

for a 16-bit microprocessor. In order to save space, the signatures were generated as unsigned 16-bit numbers. This
gives 65,535 possible signatures to use, which far surpasses the number of basic blocks you could fit in such a small
memory space as we had on our device.

To deal with the multiple fan-in successor problem mentioned above, we ran the signature generation step as normal.
Then we checked the entire graph to see if there were any mismatched signatures. If there were, we inserted a buffer
block to deal with that problem and updated the surrounding blocks to match the new block.

To implement the control flow checking, we inserted a set of instructions at the beginning of each basic block to do the
XOR operation specified above. We also inserted instructions at the end of each block to update the run-time signature
tracker to be the signature of the block about to be left.

One of the optimizations we used was to only insert the extra XOR operation when 𝐷𝑛1 was ̸= 0. This is one reason
why the buffer block fix worked.

8.6 Notes

This pass was created for the purposes of studying LLVM IR and the LLVM C++ framework. It is not actively being
maintained.

Fig. 8.6: using the buffer block

8.6. Notes 27

COAST

Fig. 8.7: inserting instructions into basic blocks

28 Chapter 8. Control Flow Checking via Software Signatures (CFCSS)

CHAPTER 9

Tests

9.1 Baremetal Benchmarks

In the course of developing COAST, it became necessary to validate that COAST-protected code operates as expected.
We have collected a number of benchmarks to put COAST through different use cases. Some of these can be run on
Linux, and others have been built to target a specific architecture.

Some of the tests are from known test suites, adapted to work with COAST. Others are of our own concoction. The
tests are found in the repo in this directory We list some noteworthy directories below:

• aes - An implementation of AES, borrowed from this repo along with cache_test, matrixMultiply, and
qsort.

• chstone - adapted from CHStone test suite.

• makefiles - the backbone of the testing setup, this directory has all of the files for configuring GNU Make to run
the tests.

• TMRregression/unitTests - Small unit tests which test very specific COAST functionality. Corner cases usually
uncovered when trying to protect larger applications. The directory TMRregression contains scripts for
running these and other tests.

9.2 FreeRTOS Applications

Protecting a FreeRTOS kernel and application is much more complex a task than protecting a baremetal program.
The files can be found here, and the COAST configuration needed to get the applications to work is detailed in the
Makefile.

29

https://github.com/byuccl/coast/tree/master/tests
https://github.com/byuccl/coast/tree/master/tests/aes
https://github.com/lanl/benchmark_codes
https://github.com/byuccl/coast/tree/master/tests/chstone
http://www.ertl.jp/chstone/
https://github.com/byuccl/coast/tree/master/tests/makefiles
https://www.gnu.org/software/make/
https://github.com/byuccl/coast/tree/master/tests/TMRregression/unitTests
https://github.com/byuccl/coast/tree/master/rtos/pynq
https://github.com/byuccl/coast/tree/master/rtos/pynq/Makefile

COAST

30 Chapter 9. Tests

CHAPTER 10

Fault Injection

To supplement the testing done in actual high-radiation environments, we have developed a system to inject faults into
the applications we want to test. This system is built on QEMU, the Quick EMUlator. We currently support the ARM
Cortex-A9 processor, the main processing unit found in the Zynq-7000 SoC, a part we have often used in radiation
tests.

The basic idea is to have a QEMU instance running the application that also runs a GDB stub. Using the GDB interface,
we can change values in the memory or registers as desired. We utilize a QEMU plugin to keep track of exactly how
cycles have elapsed so that the faults injected can be distributed evenly through time.

Instructions for building QEMU and the associated plugins can be found in the README of our QEMU fork.

Instructions for using the fault injector can be found by executing

python3 supervisor.py -h

in the directory coast/simulation/platform.

31

https://www.qemu.org/
https://github.com/byuccl/qemu/blob/cache-sim/README.rst#building

COAST

32 Chapter 10. Fault Injection

CHAPTER 11

Folder guide

11.1 boards

This folder has support files needed for the various target architectures we have used in testing COAST.

11.2 build

This folder contains instructions on how to build LLVM, and when built will contain the binaries needed to compile
source code. Note: building LLVM from source is optional.

11.3 projects

The passes that we have developed as part of COAST.

11.4 rtos

Example applications for FreeRTOS and how to use it with COAST.

11.5 simulation

Files for running fault injection campaigns.

33

COAST

11.6 tests

Benchmarks we use to validate the correct operation of COAST.

34 Chapter 11. Folder guide

CHAPTER 12

Results

See the results of fault injection and radiation beam testing

12.1 MSP430

The current results are shown below. Detailed descriptions of the benchmarks, methodology, and analysis of the results
are available in Matthew Bohman’s Master’s thesis.

35

https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7724&context=etd

COAST

36 Chapter 12. Results

COAST

12.1. MSP430 37

COAST

38 Chapter 12. Results

CHAPTER 13

Additional Resources

• Matthew Bohman’s Master’s thesis.

• IEEE Transactions on Nuclear Science, Vol. 66 Issue 1 - Microcontroller Compiler-Assisted Software Fault
Tolerance

• IEEE Transactions on Nuclear Science, Vol. 67 Issue 1 - Applying Compiler-Automated Software Fault Toler-
ance to Multiple Processor Platforms

39

https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7724&context=etd
https://ieeexplore.ieee.org/document/8571250
https://ieeexplore.ieee.org/document/8571250
https://ieeexplore.ieee.org/document/8933038
https://ieeexplore.ieee.org/document/8933038

	Getting Started
	What is LLVM?
	Prerequisites
	Installing LLVM
	Building the Passes

	Using the Makefile System
	Targets
	Extending the Makefile system
	Example

	Passes
	Description
	Configuration Options
	Details
	Debugging Tools

	Scope of Replication
	Configuration
	Pointer Crossings
	Example

	Troubleshooting
	Troubleshooting Ideas

	Release Notes
	v1.5 - October 2020
	v1.4 - August 2020
	v1.3 - November 2019
	v1.2 - October 2019

	Using an IDE to aid LLVM development
	Using Eclipse with LLVM
	Using VS Code with LLVM

	Control Flow Checking via Software Signatures (CFCSS)
	Introduction
	Previous Work
	Algorithm
	Modifications
	Implementation
	Notes

	Tests
	Baremetal Benchmarks
	FreeRTOS Applications

	Fault Injection
	Folder guide
	boards
	build
	projects
	rtos
	simulation
	tests

	Results
	MSP430

	Additional Resources

